Computing a Fixed Point of Contraction Maps in Polynomial Queries

Xi Chen Juhao Li Mihalis Yannakakis
Columbia Columbia Columbia Columbia

Game and Equilibria workshop, 2024

CONTRACTION FIXED POINT

$$
\frac{\text{Def.}}{\text{Def.}} \quad A \text{ map } f: [0,1]^k \mapsto [0,1]^k \text{ is a (1-Y)-contraction if}
$$
\n
$$
\left| f(x) - f(y) \right|_{\infty} \le (1-\gamma) |x-y|_{\infty} \quad \forall x,y \in [0,1]^k.
$$

CONTRACTION FIXED POINT

$$
\frac{\text{Def.}}{\text{Def.}} \quad A \text{ map } f: [0,1]^k \mapsto [0,1]^k \text{ is a (1-Y)-contraction if}
$$
\n
$$
\int f(x) - f(y) \Big|_{\infty} \le (1-x) |x-y|_{\infty} \quad \forall x. y \in [0,1]^k.
$$

Theorem. [Banach (1922)]

Every contraction map has a unique fixed point . $\overline{\mathsf{A}}$ $x^* =$ |
|-
|{k*)

APPLICATIONS OF BANACH FIXED POINT

Mathematics:

Picard-Lindelof (Cauchy-Lipschitz) theorem Nash embedding theorem

Computer science:

Markov decision processes

Underlie many classic dynamic programming problems

Subsume stochastic/mean-payoff/parity games

Theorem. (Banach (19221]

Every contraction map has ^a unique fixed point.

QUERY MODEL

- $*$ We have a query access to the function f .
- * We nave a yuery access to the function f.
* Find an E-approx. fixed point by as few queries as possible. N $|f(x)-x|_{\infty}$ s ϵ

QUERY MODEL

- $*$ We have a query access to the function f .
- * We nave a yuery access to the function f.
* Find an E-approx. fixed point by as few queries as possible. N $|f(x)-x|_{\infty}$ s ϵ

Remark on approximation.

- o The exact fixed point may be irrational.
- oE-approximate fixed point suffices.

QUERY MODEL

- * We have ^a query access to the function f.
- * We nave a yuery access to the function f.
* Find an E-approx. fixed point by as few queries as possible. N $|f(x)-x|_{\infty}$ s ϵ

SOTA: O(log<code>k(½i)</code>. [Shellman, Sikorski 03]

 $Goal.$ $poly(k.$ $log(k)$, $log(k)$.

MOTIVATION

Contraction \bigwedge SIMPLE STOCHASTIC GAME A MEANPAYOFF N PARITYGAME

Harder

INTRIGUING STATUS

CONSTRUCTIVE EXISTENCE

Observation. Start from any point Xo and follow the path $X_i = f(x_0), X_{\lambda} = f(x_i) \cdots$ Then $|x_{n+1} - x_n|_{\infty} \leq (1-r)^n$. Claim. This sequence converges to a fixed point.

CONSTRUCTIVE EXISTENCE

Observation. Start from any point Xo and follow the path

$$
x_i = f(x_0), x_x = f(x_i) \cdots
$$

Then $|x_{n+1} - x_n|_{\infty} \le (1-r)^n$.
Claim. This sequence converges to a fixed point.

In fact, after
$$
n \approx \gamma \cdot \log(\frac{1}{\epsilon})
$$
 steps, we have
\n
$$
\int f(x_n) - x_n \Big|_{\infty} = |x_{n+1} - x_n|_{\infty} \le (1 - \gamma)^n \le \epsilon.
$$

MOTIVATION

Harder

Objective : Max/Min the probability of getting to the 1-sink.

COMPLEXITY OF SSG: NP n co-NP

Decision problem: if PL player 1 wins $3 > \frac{1}{2}$.

One player version can be solved in polytime \Rightarrow NP \cap co-NP.

COMPLEXITY OF $SSG: UP \cap co\text{-}UP$

$$
U_{i} =\begin{cases} \text{max } \{V_{j}, U_{k}\} & \text{if } U_{\text{max}} \\ \text{min } \{V_{j}, U_{k}\} & \text{if } U_{\text{min}} \\ \frac{1}{2}(V_{j}+U_{k}) & \text{if } U_{\text{rand}} \end{cases}
$$

$$
U_{0\text{-sink}} = 0 \quad U_{1\text{-sink}} = 1
$$

Denote this system of equations by $v = F(v)$.

COMPLEXITY OF SSG: UP n co-UP

$$
\angle F: [0.1]^n \rightarrow [0.1]^n \text{ is a non-exparse map.}
$$
\n
$$
|F(x) - F(y)|_{\infty} \le |x - y|_{\infty}.
$$

$$
U_{i} = \begin{cases} \max\left\{V_{j}, V_{k}\right\} & \text{if } V_{\text{max}} \\ \min\left\{V_{j}, V_{k}\right\} & \text{if } V_{\text{min}} \end{cases}
$$

$$
U_{i} = \begin{cases} \min\left\{V_{j}, V_{k}\right\} & \text{if } V_{\text{min}} \\ \frac{1}{2}(V_{j} + V_{k}) & \text{if } V_{\text{rand}} \end{cases}
$$

$$
V_{0-sink} = 0 \quad V_{1-sink} = 1
$$

 Denote this system of equations by $v = F(v)$.

COMPLEXITY OF SSG: UP n co-UP

$$
\star \quad F: [0.1]^n \to [0.1]^n \text{ is a non-exparse map.}
$$
\n
$$
\star \quad Let \quad F^{\sigma} := (1 - \sigma) \quad F. \quad \text{Because} \quad a \quad (1 - \sigma) \text{ - contraction.}
$$

$$
U_{i} = \begin{cases} \n\max\left\{V_{j}, V_{k}\right\} & \text{if } V_{\text{max}} \\ \n\min\left\{V_{j}, V_{k}\right\} & \text{if } V_{\text{min}} \\ \n\frac{1}{2} \left(V_{j} + V_{k}\right) & \text{if } V_{\text{rand}} \n\end{cases}
$$
\n
$$
U_{0-sink} = 0 \quad U_{1-sink} = 1
$$
\nDenote this system of equations by $v = F(v)$.

COMPLEXITY OF $SSG: UP \cap co\text{-}UP$

· Banach fixed point theorem => unique fixed point.

· In this case , the unique fixed point is guaranteed

rational + poly bit description .

* F: [0.1]ⁿ → [0.1]ⁿ is a <mark>non-expansive</mark> map.

 \star Let F^{δ} :=(1-8)F. Becomes a (1-r)-contraction.

COMPLEXITY OF $SSG: UPO$ $co-UP$

- · Banach fixed point theorem => unique fixed point.
- · In this case , the unique fixed point is guaranteed

rational + poly bit description .

Remark.

E-approximate fixed point surfices . Both ϵ and δ need to be $\sqrt{\rho}$ poly (n)

.
* F: [0.1]ⁿ → [0.1]ⁿ is a <mark>non-expansive</mark> map.

 \star Let F^{δ} :=(1-8)F. Becomes a (1-r)-contraction.

MOTIVATION

Contraction (E.8 = \n
$$
\bigwedge_{2} \text{poly}(M)
$$
\n

\nSimple Stochastic Game
\n $\bigwedge_{2} \text{Area} \cup \text{Value}$ \nMean PayOFF

\nExex, Paterson 96]

\nPartTYGAME

\nCaulate, Jain, khusesianov, Li, Stephen 17]

WHY QUERY MODEL?

We have such an explicit function:
$$
U_i =\begin{cases} \max\{V_j, V_K\} & i \in V_{\text{max}} \\ \min\{V_j, V_K\} & i \in V_{\text{min}} \\ \frac{1}{2}(V_j + V_K) & i \in V_{\text{rand}} \end{cases}
$$

\n $V_{0\text{-sink}} = 0$ $U_{1\text{-sink}} = 1$

WHY QUERY MODEL?

max { V j . Uk { i ∈ Umax We have such an explicit function: $U_i = \left\{ \begin{array}{c} V_i = \{V_j, V_{k}\} & i \in V_{min} \ \{V_{j+1} V_{k}\} & i \in V_{rand} \end{array} \right.$ $\frac{1}{2}(V_j + V_k)$ i E Vrand $V_{0-sink} = 0$ $V_{1-sink} = 1$

Unfortunately, we don't know how to work on them beyond evaluating function values ...

Another more well-understood example : Bronwer

BROUWER FIXED POINT $L \in (0, \infty)$ Def. A map $f:[0,1]^k \mapsto [0,1]^k$ is L -Lipschitz if $|f(x)-f(y)|_{\infty} \leq L \cdot |x-y|_{\infty}$ $\forall x. y \in [0,1]^k$.

Theorem. [Brouwer (1911)] Every continuous function $f: \triangle^k \to \triangle^k$ has a fixed point.

BROUWER FIXED POINT $L \in (0, \infty)$ Def. A map $f:[0,1]^k \mapsto [0,1]^k$ is L -Lipschitz if $|f(x)-f(y)|_{\infty} \leq L \cdot |x-y|_{\infty}$ $\forall x. y \in [0,1]^k$.

Theorem. [Brouwer (1911)] Every continuous function f:[0..)"-[0, ¹⁷"has ^a fixed point .

BROUWER FIXED POINT

$$
\frac{\text{Def.}}{\text{Arg} \cdot \text{Arg} \cdot f: [0, 1]^k \mapsto [0, 1]^k \text{ is } \text{L-Lipschitz if}
$$
\n
$$
\left|f(x) - f(y)\right|_{\infty} \leq \text{L} \cdot |x - y|_{\infty} \quad \forall x. y \in [0, 1]^k.
$$

COMPLEXITY OF BROUWER

* Exponential query lower bound [HPV'89, CD'08] $*$ PPAD-complete (widely believed $\neq P$) * How about important explicit functions ?

NASH EQUILIBRIUM

Theorem 23 (Nash 1951) Every game with a finite number of players and action profiles has at least one Nash equilibrium.

Proof. Given a strategy profile $s \in S$, for all $i \in N$ and $a_i \in A_i$ we define

$$
\varphi_{i,a_i}(s) = \max\{0, u_i(a_i, s_{-i}) - u_i(s)\}.
$$

We then define the function $f : S \to S$ by $f(s) = s'$, where

$$
s'_{i}(a_{i}) = \frac{s_{i}(a_{i}) + \varphi_{i,a_{i}}(s)}{\sum_{b_{i} \in A_{i}} s_{i}(b_{i}) + \varphi_{i,b_{i}}(s)}
$$

=
$$
\frac{s_{i}(a_{i}) + \varphi_{i,a_{i}}(s)}{1 + \sum_{b_{i} \in A_{i}} \varphi_{i,b_{i}}(s)}.
$$
 (5)

NASH EQUILIBRIUM

Theorem. [DGP'0b, CDT'0b] Computing a Nash equilibrium in ^a 2-player game is PPAD-complete .

"Computing a Nash equilibrium is as hard as computing a general Brouwer fixed point."

COMPLEXITY OF CONTRACTION?

QUERY MODEL * We have a query access to the function f . we have a free y access by the fancement f.
* Find an E-approx. fixed point by as few queries as possible. N |f(x) - x/x ⁼ E Efficient. poly(k, log(%), log(%)).

POLY-QUERY ALGORITHM !

Our Main Result. - Main Kesult.
An O(k²·log(½)) Guery algorithm for CONTRACTION (k,ε,ծ).

QUERY MODEL

- * We have a query access to the function f .
- we nave a prong access be one panoement, y.
* Find an E-approx. fixed point by as few queries as possible. |f(x) - x/x ⁼ E Efficient. $poly(k, log(k_1, log(k_2))).$

POLY-QUERY ALGORITHM!

Our Main Result.

An O(k²·log(1/2)) Guery algorithm for CONTRACTION (k, E, o).

POLY-QUERY ALGORITHM !

Our Main Result.

. Main Kesult.
An O(k²·log(½)) Guery algorithm for CONTRACTION (k,E,ď).

This makes contraction in a very intriguing complexity status !

TECHNIQUES

TECHNIQUES

Pyramid

TECHNIQUES

NON-CONVEX FOR 3-D

BALANCED POINT

BALANCED POINT

$HOWABOWJLEI$?

WEAK APPROXIMATION

Weak approximation: $|f(x)-x|_{\infty} \leq \varepsilon$

STRONG APPROXIMATION

INTRIGUING STATUS

* In CLS = PLS ^ PPAD
* Not known Query lower bound Contraction * Not known query lower bound

CONTRACTION: MORE INTRIGUING

 $*$ In CLS = PLS \cap PPAD * Not known query lower $*$ Query lower bound is impossible!

INTERPRETATION

* All other fixed points that are complete for their Ill Other fixed points that are complete for their
corresponding classes have <mark>exponential 9uery L.B.</mark> $*$ The story for contraction is completely different.

INTERPRETATION

^① Hardness ? Need to go beyond traditional wisdom about hardness in TFNP,

INTERPRETATION

^① Hardness ? Need to go beyond traditional wisdom about hardness in TFNP, ^② We hope that it helps design time-efficient algs for contraction/SSGS. TFNP Ultimately , poly-time algs .

OPEN PROBLEMS

- * Time complexity for contraction .
- * How about other p-norm ?

The only known result is poly-query and poly-time algorithm for 2-norm . [STW'9S , HKs'99]

THANKS

xichen@cs.columbia.edu yuhasLi@cs.columbia.edu mihalis @ cs. columbia.edu

