Computing a Fixed Point of Contraction Maps in Polynomial Queries

Xi Chen Columbia Yuhao Li Columbia Mihalis Yannakakis Columbia

Game and Equilibria workshop, 2024

CONTRACTION FIXED POINT

$$\frac{\text{Pef.}}{\text{Pef.}} \quad A \text{ map } f: [0, i]^{k} \mapsto [0, i]^{k} \text{ is a } (I-Y) \text{-contraction if}$$

$$|f(x) - f(Y)|_{\infty} \leq (I-Y) |x-Y|_{\infty} \quad \forall x, y \in [0, i]^{k}.$$

CONTRACTION FIXED POINT

$$\frac{\text{Def.}}{\left|\int_{\infty}^{\infty} f(y)\right|_{\infty}^{k} \mapsto [0,1]^{k} \text{ is a } (1-Y) - \text{contraction if}} \int_{\infty}^{\infty} f(y)\Big|_{\infty} \leq (1-Y) |X-Y|_{\infty} \quad \forall \times y \in [0,1]^{k}.$$

Theorem. [Banach (1922)]

Every contraction map has a unique fixed point. \uparrow $X^* = f(x^*)$

APPLICATIONS OF BANACH FIXED POINT

Mathematics:

Picard-Lindelof (Cauchy-Lipschitz) theorem Nash embedding theorem

Computer science:

Markov decision processes

Underlie many classic dynamic programming problems

Subsume stochastic/mean-payoff/parity games

Theorem. [Banach (1922)]

Every contraction map has a unique fixed point.

QUERY MODEL

- * We have a guery access to the function f.
- ★ Find an E-approx. fixed point by as few queries as possible.
 1
 f(x)-x|∞ ≤ E

QUERY MODEL

- * We have a guery access to the function f.
- * Find an ε -approx. fixed point by as few queries as possible. $\int_{|f(x)-x|_{\infty} \leq \varepsilon} \\$

Remark on approximation.

• The exact fixed point may be irrational.

o E-approximate fixed point suffices.

QUERY MODEL

- * We have a guery access to the function f.
- * Find an ε -approx. fixed point by as few queries as possible. $\int_{|f(x)-x|_{\infty} \leq \varepsilon} \\$

SOTA: O(log^k(1/21)). [Shellman, Sikorski 03]

<u>Goal.</u> poly(k, log(1/2), log(1/2)).

MOTIVATION

Contraction $\mathbf{\Lambda}$ SIMPLE STOCHASTIC GAME MEAN PAYOFF PARITY GAME

Harder

INTRIGUING STATUS

CONSTRUCTIVE EXISTENCE

<u>Observation</u>. Start from any point Xo and follow the path $x_1 = f(x_0), x_2 = f(x_1) \cdots$ Then $|x_{n+1} - x_n|_{\infty} \leq (1-r)^n$. <u>Claim</u>. This sequence converges to a fixed point.

CONSTRUCTIVE EXISTENCE

Observation. Start from any point Xo and follow the path

$$x_1 = f(x_0), x_2 = f(x_1) \cdots$$

Then $|X_{n+1} - X_n|_{\infty} \le (1-x)^n$.
Claim. This sequence converges to a fixed point.

In fact, after
$$n \approx \frac{1}{8} \cdot \log(\frac{1}{6})$$
 steps, we have
 $\left| f(x_n) - x_n \right|_{\infty} = |x_{n+1} - x_n|_{\infty} \le (1 - 8)^n \le \epsilon.$

MOTIVATION

\ Harder

Objective: Max/Min the probability of getting to the I-sink.

COMPLEXITY OF SSG: NP 1 CO-NP

Decision problem: if P[player 1 wins] > 1/2.

One player version can be solved in polytime => NP n co-NP.

$$i \in V_{max} \{V_j, V_k\} \quad i \in V_{max}$$

$$U_i = \begin{cases} max \{V_j, V_k\} & i \in V_{max} \\ min \{V_j, V_k\} & i \in V_{min} \\ \frac{1}{2}(V_j + V_k) & i \in V_{rand} \\ V_{0-sink} = 0 & V_{1-sink} = 1 \end{cases}$$

Denote this system of equations by v = F(v).

$$i = \begin{cases} \max \{V_j, V_k\} & i \in V_{max} \\ \min \{V_j, V_k\} & i \in V_{min} \\ \frac{1}{2}(V_j + V_k) & i \in V_{rand} \\ V_{0-sink} = 0 & U_{1-sink} = 1 \end{cases}$$

Denote this system of equations by $V = F(V)$.

* $F: [0,1]^n \rightarrow [0,1]^n$ is a non-expansive map. * Let $F^{*}:=(1-r)F$. Becomes a (1-r)-contraction.

$$i = \begin{cases} \max \{V_j, V_k\} & i \in V_{max} \\ \min \{V_j, V_k\} & i \in V_{min} \\ \frac{1}{2}(V_j + V_k) & i \in V_{rand} \\ V_{0-sink} = 0 & V_{1-sink} = 1 \end{cases}$$

Denote this system of equations by $V = F(V)$.

- · Banach fixed point theorem => unique fixed point.
- In this case, the unique fixed point is guaranteed

rational + Poly bit description.

★ $F: [0,1]^n \rightarrow [0,1]^n$ is a non-expansive map.

* Let $F^{s} = (1 - \delta) F$. Becomes a $(1 - \delta)$ -contraction.

- · Banach fixed point theorem => unique fixed point.
- In this case, the unique fixed point is guaranteed

rational + Polybit description.

Remark.

E-approximate fixed point surfices. Both E and & need to be 1/2 poly (n).

★ $F: [0,1]^n \rightarrow [0,1]^n$ is a non-expansive map.

* Let $F^{s} = (1 - \gamma) F$. Becomes a $(1 - \gamma)$ -contraction.

MOTIVATION

WHY QUERY MODEL?

We have such an explicit function:

$$U_{i} = \begin{cases} \max \{V_{j}, V_{k}\} & i \in V_{max} \\ \min \{V_{j}, V_{k}\} & i \in V_{min} \\ \frac{1}{2}(V_{j}+V_{k}) & i \in V_{rand} \\ V_{0-sink} = 0 & V_{1-sink} = 1 \end{cases}$$

WHY QUERY MODEL?

We have such an explicit function: $U_{i} = \begin{cases} \max \{V_{j}, V_{k}\} & i \in V_{max} \\ \min \{V_{j}, V_{k}\} & i \in V_{min} \\ \frac{1}{2}(V_{j}+V_{k}) & i \in V_{rand} \\ V_{0-sink} = 0 & U_{1-sink} = 1 \end{cases}$

Unfortunately, we don't know how to work on them beyond evaluating function values...

Another more well-understood example: Bronwer

<u>Theorem</u>. [Browner (1911)] Every continuous function $f: \Delta^k \to \Delta^k$ has a fixed point.

<u>Theorem.</u> [Brower (1911)] Every continuous function $f:[0,1]^{k} \rightarrow [0,1]^{k}$ has a fixed point.

BROUWER FIXED POINT

Def. A map
$$f:[0,1]^k \mapsto [0,1]^k$$
 is L-Lipschitz if
 $|f(x) - f(y)|_{\infty} \leq L \cdot |x - y|_{\infty} \forall x, y \in [0,1]^k$.

COMPLEXITY OF BROWWER

* Exponential query lower bound [HPV'89, CD'08]
* PPAD-complete (widely believed ≠ P)
* How about important explicit functions?

NASH EQUILIBRIUM

Theorem 23 (Nash 1951) Every game with a finite number of players and action profiles has at least one Nash equilibrium.

Proof. Given a strategy profile $s \in S$, for all $i \in N$ and $a_i \in A_i$ we define

$$\varphi_{i,a_i}(s) = \max\{0, u_i(a_i, s_{-i}) - u_i(s)\}.$$

We then define the function $f: S \to S$ by f(s) = s', where

$$s_{i}'(a_{i}) = \frac{s_{i}(a_{i}) + \varphi_{i,a_{i}}(s)}{\sum_{b_{i} \in A_{i}} s_{i}(b_{i}) + \varphi_{i,b_{i}}(s)} = \frac{s_{i}(a_{i}) + \varphi_{i,a_{i}}(s)}{1 + \sum_{b_{i} \in A_{i}} \varphi_{i,b_{i}}(s)}.$$
(5)

NASH EQUILIBRIUM

<u>Theorem.</u> [DGP'06, CDT'06] Computing a Nash equilibrium in a 2-player game is PPAD-complete.

> "Computing a Nash equilibrium is as hard as computing a general Brouwer fixed point."

COMPLEXITY OF CONTRACTION?

QUERY MODEL * We have a guery access to the function f. * Find an E-approx. fixed point by as few queries as possible. 1 1 1 f(x)-x/ase Efficient. poly(k, log(%), log(%)).

POLY-QUERY ALGORITHM!

Our Main Result. An O(k²·log(1/2)) query algorithm for CONTRACTION (K, E, 8).

QUERY MODEL

- * We have a query access to the function f.
- * Find an E-approx. fixed point by as few queries as possible.
 1
 1
 f(x)-x|_{01} \le \varepsilon
 Efficient. poly(K, log(\varepsilon), log(\varepsilon)).

POLY-QUERY ALGORITHM!

Our Main Result.

An O(k2.log(1/2)) query algorithm for CONTRACTION (K, E, 8).

POLY-QUERY ALGORITHM!

Our Main Result.

An O(k2.log(1/2)) query algorithm for CONTRACTION (K, E, 8).

This makes contraction in a very intriguing complexity status!

TECHNIQUES

TECHNIQUES

Pyramid

TECHNIQUES

NON-CONVEX FOR 3-D

BALANCED POINT

BALANCED POINT

(2K)

HOW ABOUT L=1?

WEAK APPROXIMATION

Weak approximation: $|f(x) - x|_{\infty} \le \varepsilon$

STRONG APPROXIMATION

INTRIGUING STATUS

* In CLS = PLS A PPAD * Not known query lower bound Contraction

CONTRACTION: MORE INTRIGUING

* In CLS = PLS A PPAD * Not known query lower bound * Query lower bound is impossible!

INTERPRETATION

* All Other fixed points that are complete for their corresponding classes have exponential query L.B.
 * The story for contraction is completely different.

INTERPRETATION

(1) Hardness? Need to go beyond traditional wisdom about hardness in TFNP.

INTERPRETATION

() Hardness? Need to go beyond traditional wisdom about hardness in TFNP. We hope that it helps design time-efficient algs for contraction/SSGs. TFNP Ultimately, poly-time algs. PPD Borsuk-Ulam, Tucker = PPA

OPEN PROBLEMS

* How about other P- norm ?

THANKS

xichen Ocs. columbia.edu yuhaoli Ocs. columbia.edu mihalis Ocs.columbia.edu

